

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-3-carboxypyridinium chloride hemihydrate

Rafika Bouchene,^{a,b} Sofiane Bouacida,^{c,a}* Fadila Berrah^{a,b} and Jean-Claude Daran^d

^aLaboratoire de Chimie Appliquée et Technologie des Matériaux (LCATM), Université Oum El Bouaghi, Algeria, ^bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, ^cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, and ^dLaboratoire de Chimie de Coodination, UPR-CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 04. France

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 15 April 2012; accepted 18 April 2012

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.080; data-to-parameter ratio = 16.8.

The asymmetric unit of the title compound, $C_6H_7N_2O_2^+$. Cl⁻·0.5H₂O, consists of two protonated 2-amino-3-carboxypyridine cations, two chloride anions and one molecule of water. The crystal packing can be described as alternating layers of cations and anions parallel to (110), which are linked together by $O_w - H \cdots Cl$ interactions. In the crystal, four types of classical hydrogen bonds are observed, viz. cation-anion $(O-H\cdots Cl \text{ and } N-H\cdots Cl)$, cation-cation $(N-H\cdots O)$, cation-water $(N-H\cdots O_w)$ and water-anion $(O_w-H\cdots Cl)$, resulting in the formation of an infinite three-dimensional network.

Related literature

For applications of hybrid organic-inorganic compounds, see: Bouacida (2008); Kickelbick (2007); Mitzi et al. (1998); Asaji et al. (2007); Lynch & Jones (2004). For related structures, see: Beatty (2003); Sengupta et al. (2001); Berrah et al. (2011a,b,c); Akriche & Rzaigui (2007).

organic compounds

 $\gamma = 81.682 \ (4)^{\circ}$

Z = 4

V = 773.68 (7) Å³

Mo $K\alpha$ radiation

 $\mu = 0.45 \text{ mm}^{-3}$

T = 180 K

 $R_{\rm int} = 0.033$

Experimental

Crystal data

 $C_6H_7N_2O_2^+ \cdot Cl^- \cdot 0.5H_2O_2$ $M_r = 183.60$ Triclinic, $P\overline{1}$ a = 7.8949 (4) Å b = 9.1639(5) Å c = 11.0285 (6) Å $\alpha = 81.392 \ (4)^{\circ}$ $0.1 \times 0.08 \times 0.06 \; \mathrm{mm}$ $\beta = 81.276 \ (3)^{\circ}$

Data collection

Agilent Xcalibur Sapphire1 longnozzle diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.831, T_{\max} = 1$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.08$ S = 1.013600 reflections 214 parameters 3 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

14449 measured reflections

3600 independent reflections

2857 reflections with $I > 2\sigma(I)$

 $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1W\cdots Cl1$ 0.85 (1) 2.24 (1) 3.0887 (12)	173 (2)
$O1W-H2W\cdots Cl2$ 0.84 (2) 2.33 (2) 3.1639 (12)	170 (2)
$O2A - H2A \cdots Cl1^{i}$ 0.82 2.18 2.9948 (11)	177
$O2B - H2B \cdots O1W^{i}$ 0.82 1.78 2.5818 (15)	166
$N3B - H3B2 \cdots O1B$ 0.86 2.10 2.7176 (17)	128
$N3B - H3B2 \cdots O1A^{ii}$ 0.86 2.25 2.9903 (17)	144
$N3A - H3A2 \cdots O1A$ 0.86 2.04 2.6644 (16)	129
$N3A - H3A2 \cdots O1B^{ii}$ 0.86 2.17 2.8781 (17)	140
$N3A - H3A1 \cdots Cl2^{iii}$ 0.86 2.34 3.1447 (13)	156
$N4A - H4A \cdots Cl2^{iii}$ 0.86 2.44 3.2265 (12)	152
$N4B - H4B \cdots Cl2$ 0.86 2.21 3.0510 (13)	166

Symmetry codes: (i) x, y, z - 1; (ii) -x, -y + 1, -z; (iii) -x, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algérie for their assistance. Thanks are due to MESRS and ANDRU (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Nationale pour le Développement de la Recherche Universitaire (ANDRU) - Algérie) via the PNR programme for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2352).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, 03460.
- Asaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24-28.
- Beatty, A. M. (2003). Coord. Chem. Rev., 246, 131-143.
- Berrah, F., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o2057-o2058.
- Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, 0953-0954.
- Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526.
- Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.
- Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kickelbick, G. (2007). In *Hybrid Materials: Synthesis, Characterization and Applications*. Weinheim: Wiley-VCH.
- Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.
- Mitzi, D. B., Liang, K. & Wang, S. (1998). Inorg. Chem. 37, 321-327.
- Sengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349–3354.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, 01493-01494 [doi:10.1107/S1600536812017230]

2-Amino-3-carboxypyridinium chloride hemihydrate

Rafika Bouchene, Sofiane Bouacida, Fadila Berrah and Jean-Claude Daran

Comment

Organic-inorganic hybrid compounds represent one of the most important developments in materials chemistry in recent years. The tremendous possibilities of combination of different properties in one material initiated an explosion of ideas about potential materials and applications (Bouacida, 2008; Kickelbick, 2007; Mitzi *et al.*, 1998). Hybrid structures including substituted pyridines organic units have drawn increasing attention due to their potential applications in biological and industrial fields (Asaji *et al.*, 2007; Lynch & Jones, 2004), nitrogen in the pyridine ring has a lone pair of electrons which is not delocalized with the aromatic π -electron system and is easily available for protonation (Berrah *et al.*, 2011*a*). In the presence of a carboxylic acid substituent, they are recognized as efficient N–O donors exhibiting diverse mode of coordination (Beatty, 2003; Sengupta *et al.*, 2001). Their fascinating structures are rich in H-bonds wich have a potential importance in crystal stability (Berrah *et al.*, 2011*a*,*b*,*c*; Akriche & Rzaigui, 2007).

In continuation of our search to enrich the varieties in such kinds of hybrid compounds and to investigate the influence of hydrogen bonds on the structural features, we report here the synthesis and crystal structure of 2-amino-3-carboxy-pyridinium chloride hemi hydrate, (I).

The asymmetric unit in this compound consists of two protonated, "2-amino-3-carboxypyridine", amino acids cations (A and B), two chloride anions and one molecule of water. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. Bond distances and angles observed in the different entities, present no unusual features and are consistent with those reported previously (Berrah *et al.*, 2011*b*). The crystal packing can be described as alternating layers parallel to (110) plane, which are linked together by O1W—H…Cl interactions involving molecule of water and anions chloride (Fig.2). In this structure, four types of classical hydrogen bonds are observed, *viz.* cation-anion [O—H…Cl & N —H…Cl], cation-cation [N—H…O], cation-water [N—H…O1W] and water-anion [O1W—H…Cl] (Fig. 3). All these interactions bonds link the molecules within the layers and also link the layers together, forming a three-dimensional network and reinforcing the cohesion of the structure. Additional hydrogen bond parameters are listed in table 1.

Experimental

The title compound was synthesized by reacting 3-amino-pyridine-2-carboxylic acid (3 mmol) with $InCl_3$ (1 mmol)in an aqueous solution of hydrochloric acid. The solutions were slowly evaporated to dryness for a couple of weeks. Some colorless crystals were carefully isolated under polarizing microscope for analysis by X-ray diffraction.

Refinement

The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å with $U_{iso}(H) = 1.2 U_{eq}(C \text{ or N})$ and $U_{iso}(H) = 1.5 U_{eq}(O)$. H1W and H2W were located in a difference Fourier map and refined isotropically with $U_{iso}(H) = 1.5 U_{eq}(O)$.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

The asymmetric unit of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(Brandenburg & Berndt, 2001) Partial packing viewed *via c* axis showing layers parallel to (110) plane, which are connected with O—H…Cl Hydrogen bonds, shown as dashed lines.

Figure 3

(Brandenburg & Berndt, 2001) Partial packing viewed *via b* axis showing Hydrogen bonds interactions, as dashed lines, cation-anion [O—H···Cl & N—H···Cl], cation-cation [N—H···O], cation-water [N—H···O1W] and water-anion [O1W—H···Cl].

2-Amino-3-carboxypyridinium chloride hemihydrate

Crystal data

 $\begin{array}{l} {\rm C_6H_7N_2O_2^{+} \cdot Cl^{-} \cdot 0.5H_2O} \\ M_r = 183.60 \\ {\rm Triclinic}, P\overline{1} \\ a = 7.8949 \ (4) \ {\rm \AA} \\ b = 9.1639 \ (5) \ {\rm \AA} \\ c = 11.0285 \ (6) \ {\rm \AA} \\ a = 81.392 \ (4)^{\circ} \\ \beta = 81.276 \ (3)^{\circ} \\ \gamma = 81.682 \ (4)^{\circ} \\ V = 773.68 \ (7) \ {\rm \AA}^3 \end{array}$

Data collection

Agilent Xcalibur Sapphire1 long-nozzle	14449 measured reflections
diffractometer	3600 independent reflections
Radiation source: fine-focus sealed tube	2857 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
Detector resolution: 8.2632 pixels mm ⁻¹	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(CrysAlis PRO; Agilent, 2011)	$l = -13 \rightarrow 14$
$T_{\min} = 0.831, \ T_{\max} = 1$	
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.08$	neighbouring sites
<i>S</i> = 1.01	H atoms treated by a mixture of independent
3600 reflections	and constrained refinement
214 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.1332P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.006$
direct methods	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 4

F(000) = 380 $D_x = 1.576 \text{ Mg m}^{-3}$

 $\theta = 3.0 - 28.3^{\circ}$

 $\mu = 0.45 \text{ mm}^{-1}$

Box, colourless

 $0.1 \times 0.08 \times 0.06 \text{ mm}$

T = 180 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8921 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N3A	-0.02482 (16)	0.24894 (14)	0.18532 (11)	0.0277 (3)	
H3A1	-0.0772	0.2962	0.2448	0.033*	
H3A2	-0.0497	0.2761	0.1114	0.033*	

N3B	0.13489 (17)	0.59931 (14)	0.23112 (12)	0.0291 (3)
H3B1	0.0857	0.6432	0.2933	0.035*
H3B2	0.1053	0.6298	0.1588	0.035*
O1W	0.33167 (15)	0.38876 (12)	0.72134 (10)	0.0306 (2)
H1W	0.287 (2)	0.3146 (14)	0.7070 (17)	0.046*
H2W	0.280 (2)	0.4650 (14)	0.6834 (16)	0.046*
C11	0.19706 (5)	0.11808 (4)	0.64870 (3)	0.03012 (11)
C12	0.14081 (5)	0.65043 (4)	0.55111 (3)	0.03071 (11)
O1A	0.05136 (14)	0.18895 (12)	-0.04721 (9)	0.0301 (2)
O2A	0.26652 (14)	0.01182 (12)	-0.09112 (9)	0.0287 (2)
H2A	0.2445	0.0392	-0.1619	0.043*
O1B	0.20803 (14)	0.54951 (12)	-0.00916 (10)	0.0333 (3)
N4A	0.12830 (15)	0.09603 (13)	0.32534 (10)	0.0220 (2)
H4A	0.074	0.1486	0.3809	0.026*
N4B	0.29795 (16)	0.44117 (14)	0.36162 (11)	0.0259 (3)
H4B	0.2425	0.488	0.4204	0.031*
C2B	0.34601 (17)	0.40270 (14)	0.15203 (12)	0.0193 (3)
C2A	0.19059 (17)	0.05053 (15)	0.11658 (12)	0.0196 (3)
C3A	0.09315 (17)	0.13510 (15)	0.20751 (12)	0.0201 (3)
C5A	0.24283 (19)	-0.01981 (16)	0.36061 (13)	0.0256 (3)
H5A	0.2593	-0.0421	0.4434	0.031*
C7A	0.30817 (19)	-0.06680 (16)	0.15319 (13)	0.0238 (3)
H7A	0.372	-0.1227	0.0942	0.029*
C1A	0.16107 (18)	0.09171 (15)	-0.01399 (12)	0.0210 (3)
O2B	0.38993 (13)	0.34859 (11)	-0.05118 (9)	0.0272 (2)
H2B	0.3638	0.3747	-0.1211	0.041*
C1B	0.30608 (17)	0.44226 (15)	0.02359 (12)	0.0209 (3)
C7B	0.47068 (18)	0.28766 (16)	0.18251 (13)	0.0227 (3)
H7B	0.5304	0.2339	0.1208	0.027*
C3B	0.25557 (18)	0.48538 (15)	0.24663 (13)	0.0218 (3)
C5B	0.4206 (2)	0.32921 (17)	0.39066 (14)	0.0279 (3)
H5B	0.4441	0.3064	0.4719	0.033*
C6B	0.51055 (19)	0.24892 (17)	0.30269 (13)	0.0264 (3)
H6B	0.5956	0.171	0.322	0.032*
C6A	0.3345 (2)	-0.10448 (17)	0.27672 (14)	0.0281 (3)
H6A	0.413	-0.1856	0.3008	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N3A	0.0289 (7)	0.0298 (7)	0.0217 (6)	0.0094 (6)	-0.0026 (5)	-0.0084 (5)
N3B	0.0302 (7)	0.0268 (6)	0.0280 (7)	0.0051 (6)	-0.0008 (5)	-0.0080 (5)
O1W	0.0410 (7)	0.0254 (6)	0.0259 (5)	0.0005 (5)	-0.0104 (5)	-0.0036 (4)
Cl1	0.0377 (2)	0.0322 (2)	0.02155 (18)	-0.00542 (16)	-0.00607 (15)	-0.00379 (14)
Cl2	0.0382 (2)	0.0302 (2)	0.02172 (18)	0.00677 (16)	-0.00392 (15)	-0.00771 (14)
01A	0.0310 (6)	0.0335 (6)	0.0227 (5)	0.0100 (5)	-0.0058 (4)	-0.0049 (4)
O2A	0.0349 (6)	0.0301 (6)	0.0179 (5)	0.0084 (5)	-0.0028 (4)	-0.0059 (4)
O1B	0.0351 (6)	0.0326 (6)	0.0278 (6)	0.0113 (5)	-0.0065 (5)	-0.0024 (4)
N4A	0.0249 (6)	0.0228 (6)	0.0185 (5)	-0.0021 (5)	-0.0001 (5)	-0.0062 (4)
N4B	0.0261 (6)	0.0306 (7)	0.0208 (6)	-0.0008 (5)	0.0008 (5)	-0.0093 (5)

C2B	0.0190 (6)	0.0178 (6)	0.0209 (6)	-0.0034 (5)	-0.0004 (5)	-0.0032 (5)	
C2A	0.0190 (7)	0.0188 (6)	0.0209 (7)	-0.0021 (5)	-0.0015 (5)	-0.0042 (5)	
C3A	0.0193 (7)	0.0216 (7)	0.0197 (6)	-0.0041 (5)	-0.0017 (5)	-0.0033 (5)	
C5A	0.0304 (8)	0.0265 (7)	0.0202 (7)	-0.0028 (6)	-0.0061 (6)	-0.0014 (6)	
C7A	0.0250 (7)	0.0223 (7)	0.0232 (7)	0.0005 (6)	-0.0013 (6)	-0.0055 (5)	
C1A	0.0211 (7)	0.0212 (7)	0.0204 (7)	-0.0028 (6)	-0.0003 (5)	-0.0045 (5)	
O2B	0.0330 (6)	0.0277 (5)	0.0197 (5)	0.0050 (5)	-0.0058 (4)	-0.0058 (4)	
C1B	0.0191 (7)	0.0204 (7)	0.0225 (7)	-0.0017 (6)	-0.0007 (5)	-0.0039 (5)	
C7B	0.0224 (7)	0.0227 (7)	0.0232 (7)	-0.0025 (6)	-0.0009 (6)	-0.0058(5)	
C3B	0.0201 (7)	0.0217 (7)	0.0239 (7)	-0.0049 (6)	-0.0005 (5)	-0.0043 (5)	
C5B	0.0284 (8)	0.0344 (8)	0.0210 (7)	-0.0043 (7)	-0.0050 (6)	-0.0024 (6)	
C6B	0.0247 (7)	0.0269 (7)	0.0264 (7)	0.0007 (6)	-0.0059 (6)	-0.0013 (6)	
C6A	0.0300 (8)	0.0249 (7)	0.0273 (7)	0.0049 (6)	-0.0070 (6)	-0.0018 (6)	
	()	()	× ,	· · ·	× ,	()	

Geometric parameters (Å, °)

N3A—C3A	1.3143 (18)	C2B—C7B	1.3738 (19)
N3A—H3A1	0.86	C2B—C3B	1.4236 (19)
N3A—H3A2	0.86	C2B—C1B	1.4785 (18)
N3B—C3B	1.3172 (18)	C2A—C7A	1.3695 (19)
N3B—H3B1	0.86	C2A—C3A	1.4227 (19)
N3B—H3B2	0.86	C2A—C1A	1.4778 (18)
O1W—H1W	0.854 (9)	C5A—C6A	1.353 (2)
O1W—H2W	0.843 (9)	C5A—H5A	0.93
O1A—C1A	1.2058 (17)	C7A—C6A	1.394 (2)
O2A—C1A	1.3221 (16)	C7A—H7A	0.93
O2A—H2A	0.82	O2B—C1B	1.3179 (16)
O1B—C1B	1.2058 (17)	O2B—H2B	0.82
N4A—C5A	1.3420 (18)	C7B—C6B	1.3911 (19)
N4A—C3A	1.3548 (17)	C7B—H7B	0.93
N4A—H4A	0.86	C5B—C6B	1.357 (2)
N4B—C5B	1.342 (2)	C5B—H5B	0.93
N4B—C3B	1.3491 (18)	C6B—H6B	0.93
N4B—H4B	0.86	С6А—Н6А	0.93
C3A—N3A—H3A1	120	C2A—C7A—C6A	121.60 (13)
C3A—N3A—H3A2	120	С2А—С7А—Н7А	119.2
H3A1—N3A—H3A2	120	С6А—С7А—Н7А	119.2
C3B—N3B—H3B1	120	O1A—C1A—O2A	123.10 (12)
C3B—N3B—H3B2	120	O1A—C1A—C2A	123.28 (12)
H3B1—N3B—H3B2	120	O2A—C1A—C2A	113.62 (12)
H1W—O1W—H2W	106.3 (15)	C1B—O2B—H2B	109.5
C1A—O2A—H2A	109.5	O1B—C1B—O2B	123.72 (13)
C5A—N4A—C3A	123.91 (12)	O1B—C1B—C2B	123.43 (12)
C5A—N4A—H4A	118	O2B—C1B—C2B	112.84 (12)
C3A—N4A—H4A	118	C2B—C7B—C6B	122.19 (13)
C5B—N4B—C3B	124.58 (13)	C2B—C7B—H7B	118.9
C5B—N4B—H4B	117.7	C6B—C7B—H7B	118.9
C3B—N4B—H4B	117.7	N3B—C3B—N4B	118.05 (13)
C7B—C2B—C3B	118.77 (12)	N3B—C3B—C2B	125.61 (13)

C7B—C2B—C1B	121.29 (12)	N4B—C3B—C2B	116.33 (13)
C3B—C2B—C1B	119.94 (12)	N4B—C5B—C6B	120.70 (13)
C7A—C2A—C3A	118.82 (12)	N4B—C5B—H5B	119.7
C7A—C2A—C1A	122.21 (12)	C6B—C5B—H5B	119.7
C3A—C2A—C1A	118.96 (12)	C5B—C6B—C7B	117.41 (14)
N3A—C3A—N4A	118.07 (12)	С5В—С6В—Н6В	121.3
N3A—C3A—C2A	125.06 (12)	С7В—С6В—Н6В	121.3
N4A—C3A—C2A	116.85 (12)	C5A—C6A—C7A	118.20 (14)
N4A—C5A—C6A	120.56 (13)	С5А—С6А—Н6А	120.9
N4A—C5A—H5A	119.7	С7А—С6А—Н6А	120.9
С6А—С5А—Н5А	119.7		
C5A—N4A—C3A—N3A	178.44 (13)	C7B—C2B—C1B—O2B	5.75 (18)
C5A—N4A—C3A—C2A	-2.8 (2)	C3B—C2B—C1B—O2B	-174.82 (12)
C7A—C2A—C3A—N3A	-179.18 (14)	C3B—C2B—C7B—C6B	0.4 (2)
C1A—C2A—C3A—N3A	0.5 (2)	C1B-C2B-C7B-C6B	179.82 (13)
C7A—C2A—C3A—N4A	2.20 (19)	C5B—N4B—C3B—N3B	-178.55 (13)
C1A—C2A—C3A—N4A	-178.08 (12)	C5B—N4B—C3B—C2B	1.8 (2)
C3A—N4A—C5A—C6A	1.4 (2)	C7B—C2B—C3B—N3B	179.06 (13)
C3A—C2A—C7A—C6A	-0.2 (2)	C1B—C2B—C3B—N3B	-0.4 (2)
C1A—C2A—C7A—C6A	-179.93 (14)	C7B—C2B—C3B—N4B	-1.36 (19)
C7A—C2A—C1A—O1A	175.54 (13)	C1B—C2B—C3B—N4B	179.19 (12)
C3A—C2A—C1A—O1A	-4.2 (2)	C3B—N4B—C5B—C6B	-1.3 (2)
C7A—C2A—C1A—O2A	-4.50 (19)	N4B-C5B-C6B-C7B	0.1 (2)
C3A—C2A—C1A—O2A	175.79 (12)	C2B—C7B—C6B—C5B	0.3 (2)
C7B—C2B—C1B—O1B	-173.77 (14)	N4A—C5A—C6A—C7A	0.8 (2)
C3B-C2B-C1B-O1B	5.7 (2)	C2A—C7A—C6A—C5A	-1.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D··· A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>W</i> …Cl1	0.85(1)	2.24 (1)	3.0887 (12)	173 (2)
O1 <i>W</i> —H2 <i>W</i> ···Cl2	0.84 (2)	2.33 (2)	3.1639 (12)	170 (2)
O2A—H2A····Cl1 ⁱ	0.82	2.18	2.9948 (11)	177
$O2B$ — $H2B$ ···· $O1W^{i}$	0.82	1.78	2.5818 (15)	166
N3 <i>B</i> —H3 <i>B</i> 2····O1 <i>B</i>	0.86	2.10	2.7176 (17)	128
N3 <i>B</i> —H3 <i>B</i> 2···O1 <i>A</i> ⁱⁱ	0.86	2.25	2.9903 (17)	144
N3A—H3A2…O1A	0.86	2.04	2.6644 (16)	129
$N3A - H3A2 \cdots O1B^{ii}$	0.86	2.17	2.8781 (17)	140
N3A—H3A1····Cl2 ⁱⁱⁱ	0.86	2.34	3.1447 (13)	156
N4A—H4A····Cl2 ⁱⁱⁱ	0.86	2.44	3.2265 (12)	152
N4 <i>B</i> —H4 <i>B</i> ····Cl2	0.86	2.21	3.0510(13)	166
C5A—H5A…C11	0.93	2.82	3.5417 (15)	135
$C6A - H6A - O1W^{iv}$	0.93	2.55	3.427 (2)	158
C7 <i>A</i> —H7 <i>A</i> ···O2 <i>A</i>	0.93	2.42	2.7397 (17)	100
C7 <i>B</i> —H7 <i>B</i> ····O2 <i>B</i>	0.93	2.37	2.7065 (17)	101

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) -*x*, -*y*+1, -*z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1.